Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Liesbet Jongen and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Ta–Cl) = 0.003 Å R factor = 0.020 wR factor = 0.042 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dipotassium hexachlorotantalate(IV), K₂TaCl₆

 K_2TaCl_6 was obtained as a by-product during the reaction of VCl_3 and KCl in a sealed tantalum container. The compound is isotypic with K_2PtCl_6 and contains octahedrally coordinated Ta atoms.

Received 28 June 2004 Accepted 1 July 2004 Online 9 July 2004

Comment

It is known from earlier studies that container materials can show undesired reactions, in the sense that tantalum reacts with one of the reagents, especially when unstable transition metal halides, such as VCl₃, are used (Böcker, 1996; Simon & Meyer, 1997). In an attempt to synthesize KVCl₃ from a mixture of VCl₃, V and KCl, black cubic single crystals of K_2TaCl_6 grew out of the wall of the tantalum container.

 K_2TaCl_6 crystallizes isotypic with K_2PtCl_6 (Engel, 1935). Potassium and chloride ions form a cubic close packing of spheres. Tetravalent Ta^{IV} occupies half of the octahedral holes defined by Cl⁻ ions. Octahedral [TaCl₆]²⁻ ions occupy the corners and face centres of the unit cell, and K⁺ ions occupy the interstices formed by four such anions. The K⁺ ions are cuboctahedrally coordinated by 12 Cl⁻ ions, with K⁺-Cl⁻ distances of 3.5347 (6) Å. Ta⁴⁺-Cl⁻ distances are 2.397 (3) Å.

Experimental

Black cubic crystals of K_2TaCl_6 were obtained as a by-product in an attempt to synthesize KVCl₃, starting from VCl₃, KCl and V powder (molar ratio 2:3:1) in a sealed tantalum container, jacketed by a silica ampoule. The reaction mixture was heated to 923 K for 10 d and then cooled slowly to room temperature. Single crystals of K_2TaCl_6 were selected under a microscope in an argon-filled dry-box.

ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i)

-x, -y, -z; (ii) y, -x, -z; (iii) z, x, y; (iv) -y, x, z; (v) -z, -x, -y.]

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 The unit-cell contents of K₂TaCl₆.

Crystal data

K₂TaCl₆ $M_r = 471.85$ Cubic, $Fm\bar{3}m$ a = 9.9935 (16) Å V = 998.1 (3) Å³ Z = 4 $D_x = 3.140$ Mg m⁻³ Mo K α radiation

Data collection

Stoe IPDS-I diffractometer φ scans Absorption correction: numerical (*X-RED*32; Stoe & Cie, 2002) after optimizing the crystal shape using *X-SHAPE* (Stoe & Cie, 1999)

 $T_{\min} = 0.127, T_{\max} = 0.240$

Cell parameters from 1314 reflections $\theta = 1.9-28.2^{\circ}$ $\mu = 13.37 \text{ mm}^{-1}$ T = 293 (2) K Cube, black $0.1 \times 0.1 \times 0.1 \text{ mm}$

2354 measured reflections 89 independent reflections 89 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 27.8^{\circ}$ $h = -13 \rightarrow 12$ $k = -13 \rightarrow 12$ $l = -13 \rightarrow 13$ Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + 21.1812P]$
$R[F^2 > 2\sigma(F^2)] = 0.020$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.042$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.23	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
89 reflections	$\Delta \rho_{\rm min} = -0.87 \ {\rm e} \ {\rm \AA}^{-3}$
6 parameters	

Table 1

Selected geometric parameters (Å, °).

Ta-Cl ⁱⁱⁱ	2.397 (3)	$K - Cl^{vi}$	3.5347 (6)
Cl ⁱⁱⁱ -Ta-Cl ⁱⁱ	90	Cl ⁱⁱⁱ -Ta-Cl ^v	180

Symmetry codes: (ii) y, -x, -z; (iii) z, x, y; (v) -z, -x, -y; (vi) $\frac{1}{2} + z, x, \frac{1}{2} + y$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999) and XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Böcker, M. (1996). Dissertation, Universität Hannover, Germany.

Brandenburg, K. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

Engel, G. (1935). Z. Kristallogr. 90, 341-373.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.

Simon, M. & Meyer, G. (1997). Eur. J. Solid State Inorg. Chem. 34, 73-84.

Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany.Stoe & Cie (2001). X-RED32. Version 1.22. Stoe & Cie, Darmstadt, Germany.Stoe & Cie (2002). X-AREA. MainMenu Version 1.16. Stoe & Cie, Darmstadt, Germany.

i92 Jongen and Meyer • K₂TaCl₆